Нов начин за засичане на необичайни ситуации на пешеходни пътеки е предложен от учени от Южноуралския държавен университет в рамките на международен екип.
Според изследователите методът ще подобри значително безопасността на пешеходците. Резултатите от изследването са публикувани в списанието „Safety Science“.
Всяка година повече от 270 000 пешеходци по света загиват при пътни инциденти. Съвременните модели, разработени на базата на компютърен анализ на движенията на пешеходците, се основават на набор от предварително определени признаци. Според учените подобен метод е "ненадежден" поради проблема с мащабирането на картината.
Изследователите са разработили нов метод за прогнозиране на сблъсъците на пешеходци с други участници в движението. Той се основава на високоточна невронна мрежа, която анализира изображения, получени от видеокамери в различни градски локации.
"Разработен е CNN модел за извличане на важни характеристики и откриване на аномалии или нежелани обекти (т.е. велосипедисти) от изображения, заснети от камери за наблюдение на пешеходни пътеки. Преди да се приложи CNN моделът за анализ на изображенията, трябва да се извърши предварителна обработка, за да се подобри качеството на изображенията и да се премахне излишната информация, както и за да се подобри времето за анализ и точност на откриване на обектите", обяснява старши изследователят в катедрата по извличане на данни и виртуализация Сачин Кумар.
Според Кумар предварителната обработка позволява премахването на излишната информация, което подобрява качеството на изображенията. В резултат на това е станало възможно правилното класифициране на изображението и намирането на необходимия обект в изображението на крайния етап.
В процеса на изследване учените са използвали невронната мрежа MRCNN, интегрирана с мрежите DenseNet (гъста високоточна мрежа за класифициране на изображения).
Високата ефективност на новия метод вече е потвърдена от различни симулатори. Изследователите отбелязват, че службите за пътна безопасност могат да използват техните компютърни програми.
Изследването е проведено от специалисти от Русия, Саудитска Арабия и Индия.